Scn3b knockout mice exhibit abnormal sino-atrial and cardiac conduction properties
نویسندگان
چکیده
AIM In contrast to extensive reports on the roles of Na(v)1.5 alpha-subunits, there have been few studies associating the beta-subunits with cardiac arrhythmogenesis. We investigated the sino-atrial and conduction properties in the hearts of Scn3b(-/-) mice. METHODS The following properties were compared in the hearts of wild-type (WT) and Scn3b(-/-) mice: (1) mRNA expression levels of Scn3b, Scn1b and Scn5a in atrial tissue. (2) Expression of the beta(3) protein in isolated cardiac myocytes. (3) Electrocardiographic recordings in intact anaesthetized preparations. (4) Bipolar electrogram recordings from the atria of spontaneously beating and electrically stimulated Langendorff-perfused hearts. RESULTS Scn3b mRNA was expressed in the atria of WT but not Scn3b(-/-) hearts. This was in contrast to similar expression levels of Scn1b and Scn5a mRNA. Immunofluorescence experiments confirmed that the beta(3) protein was expressed in WT and absent in Scn3b(-/-) cardiac myocytes. Lead I electrocardiograms from Scn3b(-/-) mice showed slower heart rates, longer P wave durations and prolonged PR intervals than WT hearts. Spontaneously beating Langendorff-perfused Scn3b(-/-) hearts demonstrated both abnormal atrial electrophysiological properties and evidence of partial or complete dissociation of atrial and ventricular activity. Atrial burst pacing protocols induced atrial tachycardia and fibrillation in all Scn3b(-/-) but hardly any WT hearts. Scn3b(-/-) hearts also demonstrated significantly longer sinus node recovery times than WT hearts. CONCLUSION These findings demonstrate, for the first time, that a deficiency in Scn3b results in significant atrial electrophysiological and intracardiac conduction abnormalities, complementing the changes in ventricular electrophysiology reported on an earlier occasion.
منابع مشابه
Pathophysiological Mechanisms of Sino-Atrial Dysfunction and Ventricular Conduction Disease Associated with SCN5A Deficiency: Insights from Mouse Models
Genetically modified mice provide a number of models for studying cardiac channelopathies related to cardiac Na(+) channel (SCN5A) abnormalities. We review key pathophysiological features in these murine models that may underlie clinical features observed in sinus node dysfunction and progressive cardiac conduction disease, thereby providing insights into their pathophysiological mechanisms. We...
متن کاملAge‐dependent electrocardiographic changes in Pgc‐1β deficient murine hearts
Increasing evidence implicates chronic energetic dysfunction in human cardiac arrhythmias. Mitochondrial impairment through Pgc-1β knockout is known to produce a murine arrhythmic phenotype. However, the cumulative effect of this with advancing age and its electrocardiographic basis have not been previously studied. Young (12-16 weeks) and aged (>52 weeks), wild type (WT) (n = 5 and 8) and Pgc-...
متن کاملIdiopathic atrial flutter, high grade atrioventricular block and sino-atrial dysrhythmia in a young man. Effects of exercise testing.
A 25-year-old man with idopathic atrial flutter and high grade atrioventricular (AV) block is described. Postcardioversion, sino-atrial (SA) and AV nodal dysrhythmias occurred. Treadmill exercise during atrial flutter increased AV conduction to 2:1, and normalized SA and AV nodal function following cardioversion. A neurogenic basis for these arrhythmias is hypothesized.
متن کاملAbnormal cardiac conduction and morphogenesis in connexin40 and connexin43 double-deficient mice.
Connexin40-deficient (Cx40(-/-)/Cx43(+/+)) and connexin43-heterozygous knockout mice (Cx40(+/+)/Cx43(+/-)) are viable but show cardiac conduction abnormalities. The ECGs of adult double heterozygous animals (Cx40(+/-)/Cx43(+/-)) suggest additive effects of Cx40 and Cx43 haploinsufficiency on ventricular, but not on atrial, conduction. We also observed additive effects of both connexins on cardi...
متن کاملAtrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-{alpha}.
Transgenic mice overexpressing the inflammatory cytokine TNF-alpha in the heart develop a progressive heart failure syndrome characterized by biventricular dilatation, decreased ejection fraction, decreased survival compared with non-transgenic littermates, and earlier pathology in males. TNF-alpha mice (TNF1.6) develop atrial arrhythmias on ambulatory telemetry monitoring that worsen with age ...
متن کامل